Component A device with two or more terminals into which, or out of which, charge may flow.
Node A point at which terminals of more than two components are joined. A conductor with a substantially zero resistance is considered to be a node for the purpose of analysis.
Branch The component(s) joining two nodes.
Mesh A group of branches within a network joined so as to form a complete loop.
Port Two terminals where the current into one is identical to the current out of the other.
Circuit A current from one terminal of a generator, through load component(s) and back into the other terminal. A circuit is, in this sense, a one-port network and is a trivial case to analyse. If there is any connection to any other circuits then a non-trivial network has been formed and at least two ports must exist.
Transfer function The relationship of the currents and/or voltages between two ports. Most often, an input port and an output port are discussed and the transfer function is described as gain or attenuation.
Component transfer function For a two-terminal component (i.e. one-port component), the current and voltage are taken as the input and output and the transfer function will have units of impedance or admittance (it is usually a matter of arbitrary convenience whether voltage or current is considered the input). A three (or more) terminal component effectively has two (or more) ports and the transfer function cannot be expressed as a single impedance. The usual approach is to express the transfer function as a matrix of parameters. These parameters can be impedances, but there is a large number of other approaches, see two-port network.
0 comments:
Post a Comment